This paper presents a novel federated reinforcement learning (Fed-RL) methodology to enhance the cyber resiliency of networked microgrids. We formulate a resilient reinforcement learning (RL) training setup which (a) generates episodic trajectories injecting adversarial actions at primary control reference signals of the grid forming (GFM) inverters and (b) trains the RL agents (or controllers) to alleviate the impact of the injected adversaries. To circumvent data-sharing issues and concerns for proprietary privacy in multi-party-owned networked grids, we bring in the aspects of federated machine learning and propose a novel Fed-RL algorithm to train the RL agents. To this end, the conventional horizontal Fed-RL approaches using decoupled independent environments fail to capture the coupled dynamics in a networked microgrid, which leads us to propose a multi-agent vertically federated variation of actor-critic algorithms, namely federated soft actor-critic (FedSAC) algorithm. We created a customized simulation setup encapsulating microgrid dynamics in the GridLAB-D/HELICS co-simulation platform compatible with the OpenAI Gym interface for training RL agents. Finally, the proposed methodology is validated with numerical examples of modified IEEE 123-bus benchmark test systems consisting of three coupled microgrids.
翻译:本文介绍了一种新型的联盟强化学习(Fed-RL)方法,以提高网络微型电网的网络复原力。我们制定了一种弹性强化学习(RL)培训设置,(a)在电网形成(GFM)反转器的主要控制参考信号中产生偶发轨迹,在主控的电网参考信号中注入对抗行动,(b)培训RL代理(或控制者)以减轻被注入的对手的影响。为避免多党拥有的网络网格中的数据共享问题和专有隐私问题,我们引入了联结机学习的各个方面,并提出了一个新的Fed-RL(RL)算法,用于培训RLAT代理。为此,传统横向FD-RL(使用分解的独立环境)方法,无法在网络化微电网微电网的微电动中捕捉到同时的动态,这导致我们提出一种多剂垂直递增的动作算法,即软软动作键盘(FedSAC)算法。我们为GRIAB-HAL(G-D)三个可兼容性测试的GRAUIG-IGIG-IGIGIGUIGUIG-IG-IGIGTIL ASUIGIGIGIGIGIGIGIGUTIGTIGTIL 3UIGUTIMMMM 3的升级方法,我们创建基方法创建制了一个定制模拟模拟模拟模型。