Diffusion generative models have recently been applied to domains where the available data can be seen as a discretization of an underlying function, such as audio signals or time series. However, these models operate directly on the discretized data, and there are no semantics in the modeling process that relate the observed data to the underlying functional forms. We generalize diffusion models to operate directly in function space by developing the foundational theory for such models in terms of Gaussian measures on Hilbert spaces. A significant benefit of our function space point of view is that it allows us to explicitly specify the space of functions we are working in, leading us to develop methods for diffusion generative modeling in Sobolev spaces. Our approach allows us to perform both unconditional and conditional generation of function-valued data. We demonstrate our methods on several synthetic and real-world benchmarks.
翻译:传播基因模型最近应用到可以将现有数据视为音频信号或时间序列等基本功能的离散化的领域,然而,这些模型直接在离散数据上运行,在模型进程中没有将观测到的数据与基本功能形式相联系的语义学。我们通过开发Hilbert空间高萨测量模型的基础理论,将传播模型直接用于功能空间。我们功能空间观点的一个重要好处是,它使我们能够明确指定我们所工作的各项功能的空间,导致我们在索博列夫空间开发传播基因模型的方法。我们的方法使我们能够进行无条件和有条件的功能价值数据生成。我们在几个合成和现实世界基准上展示了我们的方法。