Theory of Mind is an essential ability of humans to infer the mental states of others. Here we provide a coherent summary of the potential, current progress, and problems of deep learning approaches to Theory of Mind. We highlight that many current findings can be explained through shortcuts. These shortcuts arise because the tasks used to investigate Theory of Mind in deep learning systems have been too narrow. Thus, we encourage researchers to investigate Theory of Mind in complex open-ended environments. Furthermore, to inspire future deep learning systems we provide a concise overview of prior work done in humans. We further argue that when studying Theory of Mind with deep learning, the research's main focus and contribution ought to be opening up the network's representations. We recommend researchers use tools from the field of interpretability of AI to study the relationship between different network components and aspects of Theory of Mind.
翻译:心智理论是人类推断他人精神状态的基本能力。 我们在此对思想理论的深层次学习方法的潜力、 目前的进展和问题进行连贯的总结。 我们强调,目前的许多发现可以通过捷径来解释。 这些捷径之所以出现,是因为用于在深层学习系统中调查心智理论的任务过于狭窄。 因此, 我们鼓励研究人员在复杂的开放环境中调查心智理论。 此外, 为了激励未来的深层次学习系统, 我们简要概述了人类先前所做的工作。 我们还认为, 在深层学习“心智理论”时,研究的主要重点和贡献应该是打开网络的面貌。 我们建议研究人员使用AI可解释性领域的工具来研究不同网络组成部分和“心智理论”各个方面之间的关系。