Fast Field-Cycling Nuclear Magnetic Resonance relaxometry is a non-destructive technique to investigate molecular dynamics and structure of systems having a wide range of applications such as environment, biology, and food. Besides a considerable amount of literature about modeling and application of such technique in specific areas, an algorithmic approach to the related parameter identification problem is still lacking. We believe that a robust algorithmic approach will allow a unified treatment of different samples in several application areas. In this paper, we model the parameters identification problem as a constrained $L_1$-regularized non-linear least squares problem. Following the approach proposed in [Analytical Chemistry 2021 93 (24)], the non-linear least squares term imposes data consistency by decomposing the acquired relaxation profiles into relaxation contributions associated with 1H-1H and 1H-14N dipole-dipole interactions. The data fitting and the L1-based regularization terms are balanced by the so-called regularization parameter. For the parameters identification, we propose an algorithm that computes, at each iteration, both the regularization parameter and the model parameters. In particular, the regularization parameter value is updated according to a Balancing Principle and the model parameters values are obtained by solving the corresponding $L_1$-regularized non-linear least squares problem by means of the non-linear Gauss-Seidel method. We analyse the convergence properties of the proposed algorithm and run extensive testing on synthetic and real data. A Matlab software, implementing the presented algorithm, is available upon request to the authors.
翻译:快速现场同步核磁共振松绑测量是一种非破坏性技术,用于调查分子动态和具有环境、生物学和食品等广泛应用的系统结构。除了大量关于这种技术在特定地区建模和应用的文献外,对于相关的参数识别问题,仍然缺乏一种算法方法。我们认为,强有力的算法方法将允许在若干应用领域统一处理不同样本。在本文中,我们将参数识别问题作为受限的1美元固定化非线性最低平方块问题进行模拟。按照[分析化学 202193年(24)]中提议的方法,非线性最低方格术语通过将获得的放松特征分解成与1H-1H和1H-14Ndipole-dipole互动相关的放松贡献,使数据匹配问题得以统一处理。数据匹配和基于L1的正规化术语由所谓的正规化参数进行平衡。对于参数的识别,我们建议采用一种计算方法,在每个参数、正规化模型参数参数的参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数和模型模型模型模型模型模型模型模型模型参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数值、[根据[202021 2093年(24]中,非线最小最小化最小化最小化最小化最小化最小化最小化最小化最小化最小化的模型方格方格词词词词词词词词词词词词词词词词词词组词词词词词词词组词词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组词组法系,通过将数据缩算算算算算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法计算法系,, 。