Spanners for metric spaces have been extensively studied, both in general metrics and in restricted classes, perhaps most notably in low-dimensional Euclidean spaces -- due to their numerous applications. Euclidean spanners can be viewed as means of compressing the $\binom{n}{2}$ pairwise distances of a $d$-dimensional Euclidean space into $O(n) = O_{\epsilon,d}(n)$ spanner edges, so that the spanner distances preserve the original distances to within a factor of $1+\epsilon$, for any $\epsilon > 0$. Moreover, one can compute such spanners in optimal $O(n \log n)$ time. Once the spanner has been computed, it serves as a "proxy" overlay network, on which the computation can proceed, which gives rise to huge savings in space and other important quality measures. On the negative side, by working on the spanner rather than the original metric, one loses the key property of being able to efficiently "navigate" between pairs of points. While in the original metric, one can go from any point to any other via a direct edge, it is unclear how to efficiently navigate in the spanner: How can we translate the existence of a "good" path into an efficient algorithm finding it? Moreover, usually by "good" path we mean a path whose weight approximates the original distance between its endpoints -- but a priori the number of edges (or "hops") in the path could be huge. To control the hop-length of paths, one can try to upper bound the spanner's hop-diameter, but naturally bounded hop-diameter spanners are more complex than spanners with unbounded hop-diameter, which might render the algorithmic task of efficiently finding good paths more challenging. The original metric enables us to navigate optimally -- a single hop (for any two points) with the exact distance, but the price is high -- $\Theta(n^2)$ edges. [...]


翻译:对测量空间的双向距离进行了广泛的研究, 无论是在一般的度量上还是在限制的等级上, 也许最显著的是在低维的 Euclidea 空间中, 因为它们有许多应用。 Euclidean 的打手可以被看成是将 $\binom{n ⁇ 2} 美元维度的Euclidean 空间压缩成 $O(n) = O ⁇ epsilon, d}(n) 美元 频度边缘上, 这样, 使光度距离将原始距离维持在 $1 eepsilon 的距离内, 任何美元比远的远。 此外, 一种可以将这样的打手边压缩成 $O (n\ log n) 美元的最佳时间。 一旦计算好了, 它就是一个“ protoxycle” overlay 网络, 它可以提高空间的节省量, 但是其他重要的质量测量。 在负面上, 通过在平线上工作而不是原始的距离上, 一个关键属性从“ navgelgate ral ral rent ral ral ral ral ral rent rent rent ral rent ral ral rent ral ral ral ral ral rup rup rup ral ral be rus a rus a rlus a rus a rent rent rent rus a rus a rent rl rent ral rup r rl d rent a rus a rut a r rl d r r r rl rl rl d r r r r r r r r r r r) r) r) r) r) r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员