Machine learning and neural network models in particular have been improving the state of the art performance on many artificial intelligence related tasks. Neural network models are typically implemented using frameworks that perform gradient based optimization methods to fit a model to a dataset. These frameworks use a technique of calculating derivatives called automatic differentiation (AD) which removes the burden of performing derivative calculations from the model designer. In this report we describe AD, its motivations, and different implementation approaches. We briefly describe dataflow programming as it relates to AD. Lastly, we present example programs that are implemented with Tensorflow and PyTorch, which are two commonly used AD frameworks.


翻译:特别是机器学习和神经网络模型一直在改善许多人工智能相关任务的先进性能; 神经网络模型通常使用采用基于梯度优化方法的框架来实施,以适应数据集中的模型; 这些框架使用一种计算衍生物的技术,称为自动区分(AD),从模型设计者那里消除进行衍生物计算的负担; 在本报告中,我们描述AD、其动机和不同的执行方法; 我们简单描述与AD有关的数据流编程; 最后,我们介绍与Tensorflow和PyTorrch执行的方案,这是两个常用的AD框架。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
6+阅读 · 2019年12月30日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
26+阅读 · 2018年8月19日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
35+阅读 · 2021年8月2日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
6+阅读 · 2019年12月30日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
26+阅读 · 2018年8月19日
Top
微信扫码咨询专知VIP会员