In this work, we study the multi-agent decision problem where agents try to coordinate to optimize a given system-level objective. While solving for the global optimal is intractable in many cases, the greedy algorithm is a well-studied and efficient way to provide good approximate solutions - notably for submodular optimization problems. Executing the greedy algorithm requires the agents to be ordered and execute a local optimization based on the solutions of the previous agents. However, in limited information settings, passing the solution from the previous agents may be nontrivial, as some agents may not be able to directly communicate with each other. Thus the communication time required to execute the greedy algorithm is closely tied to the order that the agents are given. In this work, we characterize interplay between the communication complexity and agent orderings by showing that the complexity using the best ordering is O(n) and increases considerably to O(n^2) when using the worst ordering. Motivated by this, we also propose an algorithm that can find an ordering and execute the greedy algorithm quickly, in a distributed fashion. We also show that such an execution of the greedy algorithm is advantageous over current methods for distributed submodular maximization.


翻译:在这项工作中,我们研究了多剂决定问题,即代理商试图协调以优化给定的系统级目标。在很多情况下,解决全球最佳算法是难以解决的,而贪婪算法则是研究周密而有效的方法,可以提供良好的近似解决办法,特别是亚质优化问题。执行贪婪算法要求代理商根据前代理商的解决方案下令并进行本地优化。然而,在有限的信息环境下,通过以前的代理商的解决方案可能不是边际的,因为有些代理商可能无法直接相互沟通。因此,执行贪婪算法所需要的通信时间与代理商的顺序紧密相连。在这项工作中,我们通过显示使用最复杂性是O(n)来描述通信复杂性和代理商订单之间的相互作用,并在使用最差的排序时大大提升到O(n)2。受此驱动,我们还提议一种能够找到订单并迅速以分布方式执行贪婪算法的算法。我们还表明,这种执行贪婪算法比目前分配子模块最大化的方法更有利。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员