Influence maximization (IM) is the problem of finding a seed vertex set that maximizes the expected number of vertices influenced under a given diffusion model. Due to the NP-Hardness of finding an optimal seed set, approximation algorithms are frequently used for IM. In this work, we describe a fast, error-adaptive approach that leverages Count-Distinct sketches and hash-based fused sampling. To estimate the number of influenced vertices throughout a diffusion, we use per-vertex Flajolet-Martin sketches where each sketch corresponds to a sampled subgraph. To efficiently simulate the diffusions, the reach-set cardinalities of a single vertex are stored in memory in a consecutive fashion. This allows the proposed algorithm to estimate the number of influenced vertices in a single step for simulations at once. For a faster IM kernel, we rebuild the sketches in parallel only after observing estimation errors above a given threshold. Our experimental results show that the proposed algorithm yields high-quality seed sets while being up to 119x faster than a state-of-the-art approximation algorithm. In addition, it is up to 62x faster than a sketch-based approach while producing seed sets with 3%-12% better influence scores


翻译:影响最大化(IM) 是寻找种子顶点设置的问题, 使在特定扩散模型下受影响的顶点数量最大化。 由于NP- 硬性地寻找最佳种子组, 经常对IM 使用近似算法。 在这项工作中, 我们描述一种快速的、 错误的适应性方法, 借助于计分分分解草图和散射基引信取样。 为了估计扩散过程中受影响的顶点数量, 我们使用每张草图与抽样子图对应的每面顶点 Flajolet- Martin 草图。 为了有效地模拟扩散, 单个顶点的顶点的达定基点以连续的方式存储在记忆中。 这样, 拟议的算法可以一次用单步来估计受影响的顶点数。 为了更快的 IM 内核, 我们仅在观察了超过给定临界点的估计误差之后, 才会同时重建这些草点。 我们的实验结果显示, 提议的算法产生高品质种子组, 其速度比以119x的速度要快, 将一个更快速的种子组保存到以62 % 的种子测算。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
62+阅读 · 2020年3月4日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Dimensionality Reduction for Sum-of-Distances Metric
Arxiv
0+阅读 · 2021年6月24日
Arxiv
0+阅读 · 2021年6月24日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员