High-velocity dynamic actions (e.g., fling or throw) play a crucial role in our every-day interaction with deformable objects by improving our efficiency and effectively expanding our physical reach range. Yet, most prior works have tackled cloth manipulation using exclusively single-arm quasi-static actions, which requires a large number of interactions for challenging initial cloth configurations and strictly limits the maximum cloth size by the robot's reach range. In this work, we demonstrate the effectiveness of dynamic flinging actions for cloth unfolding. We propose a self-supervised learning framework, FlingBot, that learns how to unfold a piece of fabric from arbitrary initial configurations using a pick, stretch, and fling primitive for a dual-arm setup from visual observations. The final system achieves over 80\% coverage within 3 actions on novel cloths, can unfold cloths larger than the system's reach range, and generalizes to T-shirts despite being trained on only rectangular cloths. We also finetuned FlingBot on a real-world dual-arm robot platform, where it increased the cloth coverage 3.6 times more than the quasi-static baseline did. The simplicity of FlingBot combined with its superior performance over quasi-static baselines demonstrates the effectiveness of dynamic actions for deformable object manipulation. The project video is available at $\href{https://youtu.be/T4tDy5y_6ZM}{here}$.
翻译:高速度动态动作(例如,抛掷或抛掷)在我们与变形物体的日常互动中发挥着关键作用,通过提高我们的效率,有效地扩大我们物理接触范围。然而,大多数先前的工作都利用纯粹的单臂准静态行动来解决布局操纵问题,这需要大量互动,以挑战初始布局配置,并严格限制机器人触角范围的最大布面大小。在这项工作中,我们展示了动态布料滚动动作的有效性。我们提议了一个自我监督的学习框架FlingBot,它学会如何利用视觉观察的提取、伸展和原始的双臂设置,从任意的初始配置中展开一块布料。最后的系统在3个新布局上实现了80%的覆盖,可以展示比系统伸展范围大得多的布料,并且尽管我们只接受矩形布布培训,但我们还在一个真实世界双臂机器人平台上对FlingBot进行微调校正 FlingBott, 在那里它增加了布局覆盖3.6倍的布局范围,它增加了3.6倍的布局范围,从视觉结构覆盖比准的基底基底线运行, 展示了它比准性平基底平底平底平底平底平底平底平底的平底图。