RDF2vec is a knowledge graph embedding mechanism which first extracts sequences from knowledge graphs by performing random walks, then feeds those into the word embedding algorithm word2vec for computing vector representations for entities. In this poster, we introduce two new flavors of walk extraction coined e-walks and p-walks, which put an emphasis on the structure or the neighborhood of an entity respectively, and thereby allow for creating embeddings which focus on similarity or relatedness. By combining the walk strategies with order-aware and classic RDF2vec, as well as CBOW and skip-gram word2vec embeddings, we conduct a preliminary evaluation with a total of 12 RDF2vec variants.
翻译:RDF2vec 是一种知识图形嵌入机制, 它首先通过随机行走从知识图形中提取序列, 然后将这些序列输入用于实体的计算矢量表示的嵌入算法 word2vec 的词中。 在这个海报中, 我们引入了两种新型的步行提取方式, 分别以一个实体的结构或周边为重点, 从而可以创建以相似性或关联性为重点的嵌入。 通过将步行策略与秩序认知和经典RDF2vec 以及 CBOW 和跳格 word2vec 嵌入结合起来, 我们进行初步评估, 总共12个 RDF2vec 变量 。