In this paper, we propose a new framework for fine-grained emotion prediction in the text through emotion definition modeling. Our approach involves a multi-task learning framework that models definitions of emotions as an auxiliary task while being trained on the primary task of emotion prediction. We model definitions using masked language modeling and class definition prediction tasks. Our models outperform existing state-of-the-art for fine-grained emotion dataset GoEmotions. We further show that this trained model can be used for transfer learning on other benchmark datasets in emotion prediction with varying emotion label sets, domains, and sizes. The proposed models outperform the baselines on transfer learning experiments demonstrating the generalization capability of the models.
翻译:在本文中,我们提出了一个通过情感定义模型在文本中进行细微情感预测的新框架。我们的方法包括一个多任务学习框架,将情感定义作为辅助任务,同时接受情感预测主要任务的培训。我们用隐形语言模型和类别定义预测任务来模拟定义。我们的模型优于目前精微情感数据集的先进水平。我们进一步显示,这一经过培训的模型可用于转让情感预测中具有不同情感标签、领域和大小的其他基准数据集的学习。拟议的模型超过了转移学习实验的基准,展示了模型的通用能力。