In this paper, online linear regression in environments corrupted by non-Gaussian noise (especially heavy-tailed noise) is addressed. In such environments, the error between the system output and the label also does not follow a Gaussian distribution and there might exist abnormally large error samples (or outliers) which mislead the learning process. The main challenge is how to keep the supervised learning problem least affected by these unwanted and misleading outliers. In recent years, an information theoretic algorithm based on Renyi's entropy, called minimum error entropy (MEE), has been employed to take on this issue. However, this minimization might not result in a desired estimator inasmuch as entropy is shift-invariant, i.e., by minimizing the error entropy, error samples may not be necessarily concentrated around zero. In this paper, a quantization technique is proposed by which not only aforementioned need of setting errors around the origin in MEE is addressed, but also major outliers are rejected from MEE-based learning and MEE performance is improved from convergence rate, steady state misalignment, and testing error points of view.


翻译:在本文中,解决了非加西噪音(特别是重尾噪声)腐蚀环境中的在线线性回归问题。在这种环境中,系统输出和标签之间的错误也并不随高斯分布而变化,而且可能存在异常大的错误样本(或离子),误导学习过程。主要的挑战是如何使受监督的学习问题受到这些不想要的和误导的离子的影响最小。近年来,采用了基于Renyi的酶(称为最小误差激(MEE))的信息理论算法来处理这一问题。然而,这种最小化可能不会导致预期的测算器,因为恒温是变异的,也就是说,通过最小化误差样本不一定集中在零点左右。在本文中,提出了一种昆虫化技术,不仅解决了上述需要确定MEE来源的错误,而且还拒绝了MEE学习中的主要离子,MEE的性能从趋同率、稳定状态误差、测试和误差点上改进了MEE的趋同率。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
109+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
109+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员