Anomaly Detectors are trained on healthy operating condition data and raise an alarm when the measured samples deviate from the training data distribution. This means that the samples used to train the model should be sufficient in quantity and representative of the healthy operating conditions. But for industrial systems subject to changing operating conditions, acquiring such comprehensive sets of samples requires a long collection period and delay the point at which the anomaly detector can be trained and put in operation. A solution to this problem is to perform unsupervised transfer learning (UTL), to transfer complementary data between different units. In the literature however, UTL aims at finding common structure between the datasets, to perform clustering or dimensionality reduction. Yet, the task of transferring and combining complementary training data has not been studied. Our proposed framework is designed to transfer complementary operating conditions between different units in a completely unsupervised way to train more robust anomaly detectors. It differs, thereby, from other unsupervised transfer learning works as it focuses on a one-class classification problem. The proposed methodology enables to detect anomalies in operating conditions only experienced by other units. The proposed end-to-end framework uses adversarial deep learning to ensure alignment of the different units' distributions. The framework introduces a new loss, inspired by a dimensionality reduction tool, to enforce the conservation of the inherent variability of each dataset, and uses state-of-the art once-class approach to detect anomalies. We demonstrate the benefit of the proposed framework using three open source datasets.


翻译:异常探测器接受健康操作条件数据的培训,并在测量的样品偏离培训数据分布时发出警报;这意味着用于培训模型的样品在数量上应足够,并能够代表健康的操作条件;但对于因操作条件变化而变化的工业系统而言,获取这种全面的样品组需要很长的收集期,并延迟异常探测器能够接受培训和投入运行的点;解决这个问题的一个解决办法是进行不受监督的传输学习(UTL),在不同单位之间传输补充数据。但在文献中,UTL旨在寻找数据集之间的共同结构,进行集群或维度减少。然而,转让和合并补充培训数据的任务尚未研究。我们提议的框架旨在以完全不受监督的方式将不同单位之间的互补操作条件转移,以训练更强的异常探测器。因此,它不同于其他未受到监督的传输学习工作,因为它侧重于单级分类问题。拟议的方法能够探测运行条件下的异常现象仅由其他单位所经历。拟议的端至端框架使用敌对式深度数据组合,即采用对立式深度数据的深度配置,确保对不同单位进行内部变异性分析,从而展示不同单位的升级。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员