Recently, several methods have been proposed for estimating the mutual information from sample data using deep neural networks and without the knowing closed form distribution of the data. This class of estimators is referred to as neural mutual information estimators. Although very promising, such techniques have yet to be rigorously bench-marked so as to establish their efficacy, ease of implementation, and stability for capacity estimation which is joint maximization frame-work. In this paper, we compare the different techniques proposed in the literature for estimating capacity and provide a practitioner perspective on their effectiveness. In particular, we study the performance of mutual information neural estimator (MINE), smoothed mutual information lower-bound estimator (SMILE), and directed information neural estimator (DINE) and provide insights on InfoNCE. We evaluated these algorithms in terms of their ability to learn the input distributions that are capacity approaching for the AWGN channel, the optical intensity channel, and peak power-constrained AWGN channel. For both scenarios, we provide insightful comments on various aspects of the training process, such as stability, sensitivity to initialization.
翻译:最近,我们提出了几种方法,利用深层神经网络来估计抽样数据中的相互信息,而数据传播又不采用知情的封闭形式,这类估计者被称为神经相互信息估计者,虽然这些技术非常有希望,但尚有待严格地确定其效力、执行的便利性和能力估算的稳定性,即联合最大化框架工作。在本文件中,我们比较了文献中为估计能力而提出的不同技术,并提供了实践者对其有效性的看法。特别是,我们研究了相互信息测算器(MINE)、平滑的相互信息测算器(SMILE)的性能,平滑的相互信息测算器(SMILE),指导信息神经测算器(DINE)和提供关于InfoNCE的见解。我们评估了这些算法,看它们是否有能力学习AWGN频道、光密度频道和最高电压限制的AWGN频道正在接近的投入分布。我们从两方面对培训过程的各个方面提出了深刻的评论,例如稳定性、对初始的敏感度。