This article investigates the quality of the estimator of the linear Monge mapping between distributions. We provide the first concentration result on the linear mapping operator and prove a sample complexity of $n^{-1/2}$ when using empirical estimates of first and second order moments. This result is then used to derive a generalization bound for domain adaptation with optimal transport. As a consequence, this method approaches the performance of theoretical Bayes predictor under mild conditions on the covariance structure of the problem. We also discuss the computational complexity of the linear mapping estimation and show that when the source and target are stationary the mapping is a convolution that can be estimated very efficiently using fast Fourier transforms. Numerical experiments reproduce the behavior of the proven bounds on simulated and real data for mapping estimation and domain adaptation on images.
翻译:本篇文章调查分布区间线形蒙古绘图估计值的质量。 我们为线形制图操作员提供了第一个浓度结果, 在使用第一和第二顺序时间的经验估计时, 我们证明了其样本复杂性为$n ⁇ -1/2}美元。 这个结果随后被用来得出一个一般化, 以便以最佳运输方式对域进行适应。 因此, 这个方法在对问题的共变结构的温和条件下, 将理论Bayes预测器的性能处理得比较温和。 我们还讨论线形绘图估计的计算复杂性, 并表明当源和目标处于固定状态时, 绘图是一种可使用快速的 Fourier 变换非常高效地估计的共变组合。 数字实验复制了模拟和实际数据的范围, 用于绘图估计和图像区域适应。