Blogs have recently become one of the most favored services on the Web. Many users maintain a blog and write posts to express their opinion, experience and knowledge about a product, an event and every subject of general or specific interest. More users visit blogs to read these posts and comment them. This "participatory journalism" of blogs has such an impact upon the masses that Keller and Berry argued that through blogging "one American in tens tells the other nine how to vote, where to eat and what to buy" \cite{keller1}. Therefore, a significant issue is how to identify such influential bloggers. This problem is very new and the relevant literature lacks sophisticated solutions, but most importantly these solutions have not taken into account temporal aspects for identifying influential bloggers, even though the time is the most critical aspect of the Blogosphere. This article investigates the issue of identifying influential bloggers by proposing two easily computed blogger ranking methods, which incorporate temporal aspects of the blogging activity. Each method is based on a specific metric to score the blogger's posts. The first metric, termed MEIBI, takes into consideration the number of the blog post's inlinks and its comments, along with the publication date of the post. The second metric, MEIBIX, is used to score a blog post according to the number and age of the blog post's inlinks and its comments. These methods are evaluated against the state-of-the-art influential blogger identification method utilizing data collected from a real-world community blog site. The obtained results attest that the new methods are able to better identify significant temporal patterns in the blogging behaviour.


翻译:博客最近成为网络上最受欢迎的服务之一。 许多用户都保留博客并撰写文章, 表达对产品、事件、一般或特定兴趣主题的看法、经验和知识。 更多用户访问博客阅读这些文章并发表评论。 这个博客的“ 参与性新闻”对大众有如此大的影响, Keller 和 Berry 认为, 通过博客“ 数以十计的一位美国人告诉另外九个人如何投票, 在哪里吃饭和买什么 ” 。 因此, 一个重要问题是如何识别这些有影响力的博客。 这个问题非常新, 相关文献缺乏复杂的解决方案, 但最重要的是, 这些解决方案没有考虑到识别有影响力的博客的时间方面, 尽管时间是博客圈中最关键的方面。 这篇文章通过提出两种容易计算的博客排名方法来调查有影响力的博客的问题。 每种方法都基于具体指标来评分博客文章。 首个指标称为MEIBIB, 将博客的第二版链接和评论数量考虑在内, 与IMIB的排名方法相比, 将使用一个更精确的版本。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
27+阅读 · 2020年3月6日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员