Open-source licenses establish the legal foundation for software reuse, yet license variants, including both modified standard licenses and custom-created alternatives, introduce significant compliance complexities. Despite their prevalence and potential impact, these variants are poorly understood in modern software systems, and existing tools do not account for their existence, leading to significant challenges in both effectiveness and efficiency of license analysis. To fill this knowledge gap, we conduct a comprehensive empirical study of license variants in the PyPI ecosystem. Our findings show that textual variations in licenses are common, yet only 2% involve substantive modifications. However, these license variants lead to significant compliance issues, with 10.7% of their downstream dependencies found to be license-incompatible. Inspired by our findings, we introduce LV-Parser, a novel approach for efficient license variant analysis leveraging diff-based techniques and large language models, along with LV-Compat, an automated pipeline for detecting license incompatibilities in software dependency networks. Our evaluation demonstrates that LV-Parser achieves an accuracy of 0.936 while reducing computational costs by 30%, and LV-Compat identifies 5.2 times more incompatible packages than existing methods with a precision of 0.98. This work not only provides the first empirical study into license variants in software packaging ecosystem but also equips developers and organizations with practical tools for navigating the complex landscape of open-source licensing.


翻译:开源许可证为软件复用奠定了法律基础,然而许可证变体——包括修改后的标准许可证及自定义替代方案——引入了显著的合规复杂性。尽管这些变体在现代软件系统中普遍存在且具有潜在影响,但其理解仍显不足,现有工具亦未考虑其存在,导致许可证分析在效能与效率上面临重大挑战。为填补这一知识空白,我们对PyPI生态系统中的许可证变体展开了全面的实证研究。研究发现,许可证的文本变异现象普遍,但仅2%涉及实质性修改。然而,这些许可证变体引发了严重的合规问题,其下游依赖中有10.7%被检测出存在许可证不兼容。基于研究启示,我们提出了LV-Parser——一种利用差异比对技术与大语言模型进行高效许可证变体分析的新方法,以及LV-Compat——一个用于检测软件依赖网络中许可证不兼容性的自动化流程。评估表明,LV-Parser实现了0.936的准确率,同时降低30%计算成本;LV-Compat识别出的不兼容软件包数量达到现有方法的5.2倍,且精确率达0.98。本工作不仅首次对软件打包生态系统中的许可证变体进行了实证研究,更为开发者和组织提供了应对复杂开源许可环境的实用工具。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员