Reconstructing high-resolution flow fields from sparse measurements is a major challenge in fluid dynamics. Existing methods often vectorize the flow by stacking different spatial directions on top of each other, hence confounding the information encoded in different dimensions. Here, we introduce a tensor-based sensor placement and flow reconstruction method which retains and exploits the inherent multidimensionality of the flow. We derive estimates for the flow reconstruction error, storage requirements and computational cost of our method. We show, with examples, that our tensor-based method is significantly more accurate than similar vectorized methods. Furthermore, the variance of the error is smaller when using our tensor-based method. While the computational cost of our method is comparable to similar vectorized methods, it reduces the storage cost by several orders of magnitude. The reduced storage cost becomes even more pronounced as the dimension of the flow increases. We demonstrate the efficacy of our method on three examples: a chaotic Kolmogorov flow, in-situ and satellite measurements of the global sea surface temperature, and 3D unsteady simulated flow around a marine research vessel.
翻译:从稀少的测量中重建高分辨率流场是流体动态中的一大挑战。 现有方法往往通过将不同的空间方向叠叠在彼此之间,将流体向量化,从而将不同层面的信息混为一谈。 在这里,我们引入了一种基于高压传感器的定位和流体重建方法,这种方法保留并利用了流体固有的多维性。 我们得出了流量重建错误、储存要求和计算方法成本的估计数。 我们用实例表明,我们以强压为基础的方法比类似的矢量化方法要精确得多。 此外,使用我们以强压为基础的方法时,错误的差异较小。 虽然我们方法的计算成本与类似的矢量化方法相似,但它将存储成本降低几个数量级。 储量成本的降低随着流量的维度的增加而变得更加明显。 我们用三个例子来展示了我们的方法的有效性:混乱的科尔莫多罗夫流、全球海面温度的地表和卫星测量以及3D不稳的模拟流绕海洋研究船。