Recent work proposed $\delta$-relevant inputs (or sets) as a probabilistic explanation for the predictions made by a classifier on a given input. $\delta$-relevant sets are significant because they serve to relate (model-agnostic) Anchors with (model-accurate) PI- explanations, among other explanation approaches. Unfortunately, the computation of smallest size $\delta$-relevant sets is complete for ${NP}^{PP}$, rendering their computation largely infeasible in practice. This paper investigates solutions for tackling the practical limitations of $\delta$-relevant sets. First, the paper alternatively considers the computation of subset-minimal sets. Second, the paper studies concrete families of classifiers, including decision trees among others. For these cases, the paper shows that the computation of subset-minimal $\delta$-relevant sets is in NP, and can be solved with a polynomial number of calls to an NP oracle. The experimental evaluation compares the proposed approach with heuristic explainers for the concrete case of the classifiers studied in the paper, and confirms the advantage of the proposed solution over the state of the art.


翻译:最近提出的以美元计算的有关投入(或数组),作为对某一投入的分类员所作预测的概率解释。 美元=delta$相关数据集之所以重要,是因为它们有助于将(模型-不可知性)锁定器与(模型-准确性) PI 解释联系起来,以及其他解释方法。 不幸的是,最小尺寸的美元=delta$相关数据集的计算已经完成,使其计算在实际中基本不可行。本文调查了解决与美元/德列塔元相关数据集实际限制的解决办法。首先,本文考虑子集-最小数据集的计算。第二,文件研究分类器的具体组群,包括决策树等。对于这些情况,文件表明子小号$\delta$相关数据集的计算是在NP,并且可以用致NP或甲骨调的多数值来解决。实验性评价比较了文件中所研究的分类器具体案例的拟议方法与超度解释器解释器,确认拟议解决办法的优势。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月21日
Arxiv
6+阅读 · 2018年11月29日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员