A finite difference algorithm based on the integral Laguerre transform in time for solving a three-dimensional one-way wave equation is proposed. This allows achieving high accuracy of calculation results. In contrast to the Fourier method, the approach does not need to solve systems of linear algebraic equations with indefinite matrices. To filter the unstable components of a wave field, Richardson extrapolation or spline approximation can be used. However, these methods impose additional limitations on the integration step in depth. This problem can be solved if the filtering is performed not in the direction of extrapolation of the wave field, but in a horizontal plane. This approach called for fast methods of converting the Laguerre series coefficients into the Fourier series coefficients and vice versa. The high stability of the new algorithm allows calculations with a large depth step without loss of accuracy and, in combination with Marchuk-Strang splitting, this can significantly reduce the calculation time. Computational experiments are performed. The results have shown that this algorithm is highly accurate and efficient in solving the problems of seismic migration.
翻译:提出基于整体拉盖尔变异的有限差异算法, 以便及时解决三维单向波方程式。 这样可以实现高精确度的计算结果。 与 Fourier 方法相反, 该方法不需要用无限期矩阵来解决线性代数方程系统。 要过滤波地不稳定部分, 可以使用 Richardson 外推法 或 spline 近似法 。 但是, 这些方法对集成深度施加了额外的限制 。 如果过滤不是按照波地外推法进行, 而是在水平平面进行, 这个问题就可以解决 。 这个方法要求快速将拉盖尔 序列系数转换成 Fourier 序列系数, 而反之亦然。 新的算法的高度稳定性允许在不降低精确度的情况下进行深度的计算, 并且与 Marchuk- Strang 分裂相结合, 这可以大大缩短计算时间 。 计算实验完成 。 结果表明, 这一算法在解决地震迁移问题时非常准确和有效 。