Adding propositional quantification to the modal logics K, T or S4 is known to lead to undecidability but CTL with propositional quantification under the tree semantics (tQCTL) admits a non-elementary Tower-complete satisfiability problem. We investigate the complexity of strict fragments of tQCTL as well as of the modal logic K with propositional quantification under the tree semantics. More specifically, we show that tQCTL restricted to the temporal operator EX is already Tower-hard, which is unexpected as EX can only enforce local properties. When tQCTL restricted to EX is interpreted on N-bounded trees for some N >= 2, we prove that the satisfiability problem is AExpPol-complete; AExpPol-hardness is established by reduction from a recently introduced tiling problem, instrumental for studying the model-checking problem for interval temporal logics. As consequences of our proof method, we prove Tower-hardness of tQCTL restricted to EF or to EXEF and of the well-known modal logics such as K, KD, GL, K4 and S4 with propositional quantification under a semantics based on classes of trees.


翻译:在模型逻辑K、T或S4中添加参数量化已知会导致不可降解性,但在树文语义(tQCTL)下以标定性量化的CTL承认了一个非元素性塔完全可测量性问题。我们调查了tQCTL严格碎片的复杂性,以及在树文语义下以标定性量化的模型逻辑K的复杂性。更具体地说,我们证明,TQCTL限于时间操作器EX已经是塔硬的,这是意料之外的,因为EX只能强制执行本地特性。当限制为EX的tQCTL在N ⁇ 2 的树上被解释为N ⁇ 2 时,我们证明可覆盖的 tQCTL 是AExpPol-完整; ExpPol-硬性是通过减少最近引入的标注问题而确定的,这有助于研究模型核对时间逻辑的间隔问题。我们证明, tQCTL 的塔硬性是塔硬性,因为EXEF 或ExEF 以及众所周知的模型逻辑以K4树S4 和Smanticle为基础,以K4树的S4 和SDrmatical 的等级为基础。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月6日
Arxiv
0+阅读 · 2022年7月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员