Safety is a critical concern in motion planning for autonomous vehicles. Modern autonomous vehicles rely on neural network-based perception, but making control decisions based on these inference results poses significant safety risks due to inherent uncertainties. To address this challenge, we present a distributionally robust optimization (DRO) framework that accounts for both aleatoric and epistemic perception uncertainties using evidential deep learning (EDL). Our approach introduces a novel ambiguity set formulation based on evidential distributions that dynamically adjusts the conservativeness according to perception confidence levels. We integrate this uncertainty-aware constraint into model predictive control (MPC), proposing the DRO-EDL-MPC algorithm with computational tractability for autonomous driving applications. Validation in the CARLA simulator demonstrates that our approach maintains efficiency under high perception confidence while enforcing conservative constraints under low confidence.
翻译:安全性是自动驾驶车辆运动规划中的关键问题。现代自动驾驶车辆依赖基于神经网络的感知系统,但由于固有的不确定性,基于这些推理结果做出控制决策会带来显著的安全风险。为应对这一挑战,我们提出了一种分布鲁棒优化(DRO)框架,该框架利用证据深度学习(EDL)同时考虑偶然性和认知性感知不确定性。我们的方法引入了一种基于证据分布的新型模糊集构建方式,可根据感知置信度动态调整保守性。我们将这种不确定性感知约束集成到模型预测控制(MPC)中,提出了具有计算可行性的DRO-EDL-MPC算法用于自动驾驶应用。在CARLA模拟器中的验证表明,我们的方法在高感知置信度下保持效率,同时在低置信度下执行保守约束。