Span extraction, aiming to extract text spans (such as words or phrases) from plain texts, is a fundamental process in Information Extraction. Recent works introduce the label knowledge to enhance the text representation by formalizing the span extraction task into a question answering problem (QA Formalization), which achieves state-of-the-art performance. However, QA Formalization does not fully exploit the label knowledge and suffers from low efficiency in training/inference. To address those problems, we introduce a new paradigm to integrate label knowledge and further propose a novel model to explicitly and efficiently integrate label knowledge into text representations. Specifically, it encodes texts and label annotations independently and then integrates label knowledge into text representation with an elaborate-designed semantics fusion module. We conduct extensive experiments on three typical span extraction tasks: flat NER, nested NER, and event detection. The empirical results show that 1) our method achieves state-of-the-art performance on four benchmarks, and 2) reduces training time and inference time by 76% and 77% on average, respectively, compared with the QA Formalization paradigm. Our code and data are available at https://github.com/Akeepers/LEAR.


翻译:旨在从纯文本中提取文字(如文字或短语)的Span 抽取是《信息提取》的一个基本过程。最近的工作引入了标签知识,通过将抽取任务正规化成一个问题解答问题(QA正规化),提高文本的表述,从而实现最先进的性能。然而,QA正规化并没有充分利用标签知识,而且在培训/判断方面效率低下。为解决这些问题,我们引入了一种新的模式,整合标签知识,并进一步提出了一个新模式,以明确和有效地将标签知识纳入文本表述。具体地说,它将文本和标签说明独立编码,然后将标签知识与精心设计的语义融合模块整合成文本表述。我们在三种典型的抽取任务上进行了广泛的实验:平调 NER、嵌套式NER 和事件探测。经验结果显示,1 我们的方法在四个基准上达到最新性业绩,2 与QA正式化模式相比,平均将培训时间和推导时间分别减少76%和77%。我们的代码和数据可在 http://gires/babs.

0
下载
关闭预览

相关内容

【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2019年3月26日
Arxiv
3+阅读 · 2019年3月1日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员