The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.
翻译:尽管电子装置的扩大以生产方式影响我们的生活,但电子装置制造过程中的故障或缺陷在某些情况下也可能适得其反,甚至有害,因此,确保电子装置及其生产质量无缺陷是可取的,有时也至关重要。虽然传统的图像处理(IP)技术不足以产生完整的解决方案,但深学习(DL)等其他有希望的方法也可能对多氯联苯的检查构成挑战,这主要是因为这类方法需要大量适当的数据集,在迅速增长的多氯联苯领域缺少、无法获得或没有更新这些数据。因此,这些装置的制造过程中的故障或缺陷也可能是适得其反的,在某些情况下甚至有害。因此,确保电子装置及其生产质量的零缺陷是可取的,有时也是至关重要的。传统图像处理(IP)技术虽然不足以产生完整的解决方案,但深学习(DL)等其他有希望的方法也可能对多氯联苯的检查具有挑战性,主要因为这类方法需要大量适当的数据集,而这种数据集在多氯联苯的迅速增长领域缺乏,因此,多氯联苯的检查通常由人类专家手动进行。无监督的学习(UL)方法可能适合多氯联苯的检查,一方面学习能力,而另一方面则不依赖大型的数据集。在另一面上,我们采用“深度”的“深度学习”(DL)的“深度”的“深度学习(DL)的“深度”的“深度”图像”等,我们采用一种不动动动动动动动变动和综合的计算机检测系统,从而在计算机的“升级的“升级的“机能”的“机能”的“深度”的“B”的“不动”的“升级”的“升级”的“机能检测系统”的“不动性能”的“不动性能”的“机能”的“升级的”的”的“升级的“机能”的“升级”的“机能”的“不动”的”的“机变变”的”的“机变”的“机。