Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference. Despite its popularity, the current description only considers time series aligned across units and synthetic controls expressed as linear combinations of observed control units. We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations. This model is directly applicable to the general setting of irregularly-aligned multivariate time series and may be optimized in rich function spaces -- thereby improving on some limitations of existing approaches.
翻译:使用合成控制进行反事实估计是最近在因果推断方面最成功的方法发展之一。尽管目前的说明很受欢迎,但只考虑单位和合成控制之间的时间序列对齐,合成控制只表现为观察到的控制单位的线性组合。我们提出了一个连续时间选择,即利用受控差异方程式明确模拟潜在的反事实路径。这一模式直接适用于不规则的多变量时间序列的一般设置,可以在丰富功能空间中优化,从而改进现有方法的某些局限性。