We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available. Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions. In this paper, we tackle the primary challenge to causal inference using negative controls: the identification and estimation of these bridge functions. Previous work has relied on uniqueness and completeness assumptions on these functions that may be implausible in practice and also focused on their parametric estimation. Instead, we provide a new identification strategy that avoids both uniqueness and completeness. And, we provide a new estimators for these functions based on minimax learning formulations. These estimators accommodate general function classes such as reproducing Hilbert spaces and neural networks. We study finite-sample convergence results both for estimating bridge function themselves and for the final estimation of the causal parameter. We do this under a variety of combinations of assumptions that include realizability and closedness conditions on the hypothesis and critic classes employed in the minimax estimator. Depending on how much we are willing to assume, we obtain different convergence rates. In some cases, we show the estimate for the causal parameter may converge even when our bridge function estimators do not converge to any valid bridge function. And, in other cases, we show we can obtain semiparametric efficiency.


翻译:我们研究因果参数的估算,如果不是所有混淆者都能观察到,而是有消极的控制。最近的工作表明,这些参数可以通过两个所谓的桥梁功能进行识别和有效估算。在本文件中,我们应对使用负面控制进行因果关系推断的主要挑战:确定和估计这些桥梁功能。以前的工作依赖于这些功能的独特性和完整性假设,这些假设在实践中可能无法令人信服,并且还侧重于其参数估计。相反,我们提供了一个新的识别战略,既避免独特性,也避免完整性。我们还根据微缩学习公式为这些功能提供了一个新的估计器。这些估计器容纳了普通功能类,如再生希尔伯特空间和神经网络。我们研究有限和综合结果,以估计桥梁功能本身和最终估计因果关系参数。我们这样做的假设组合多种多样,其中包括:假设的真实性和封闭性条件,以及微缩缩缩算师使用的批评性等级。我们愿意承担多少,我们甚至获得不同的趋同率。在有些案例中,我们研究有限地估算其它因果的参数,我们就可以在某个情况下,在任何桥上显示我们的统一性参数。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员