Text summarization is a technique for condensing a big piece of text into a few key elements that give a general impression of the content. When someone requires a quick and precise summary of a large amount of information, it becomes vital. If done manually, summarizing text can be costly and time-consuming. Natural Language Processing (NLP) is the sub-division of Artificial Intelligence that narrows down the gap between technology and human cognition by extracting the relevant information from the pile of data. In the present work, scientific information regarding the Friction Stir Welding of Aluminum alloys was collected from the abstract of scholarly research papers. For extracting the relevant information from these research abstracts four Natural Language Processing based algorithms i.e. Latent Semantic Analysis (LSA), Luhn Algorithm, Lex Rank Algorithm, and KL-Algorithm were used. In order to evaluate the accuracy score of these algorithms, Recall-Oriented Understudy for Gisting Evaluation (ROUGE) was used. The results showed that the Luhn Algorithm resulted in the highest f1-Score of 0.413 in comparison to other algorithms.
翻译:文本总和是将一大批文本凝结成几个关键要素以给内容带来一般印象的一种技术。 当某人需要快速和精确地摘要大量信息时, 它就变得至关重要。 如果手工完成, 简略文本会花费大量时间。 自然语言处理( NLP) 是人工智能的分支, 通过从数据堆中提取相关信息缩小技术和人类认知之间的差距。 在目前的工作中, 从学术研究论文的抽象摘要中收集了关于铝合金调频焊接的科学信息。 为了从这些研究摘要中提取相关信息, 四种基于自然语言处理的算法, 即Litetent Sermantic 分析(LSA)、 Luhn Algorithm、 Lex Rank Algorithm 和 KL- Algorithm 。 为了评估这些算法的准确性分数, 使用了Lohn Algorid Instive Proudy for Gistinginginging 评估(ROUGEGE) 。 其结果显示, Lohn ALgorimal 13 在其他最高算法中采用了LOA- forimal。