This paper is about the problem of finding a shortest $s$-$t$ path using at most $h$ edges in edge-weighted graphs. The Bellman--Ford algorithm solves this problem in $O(hm)$ time, where $m$ is the number of edges. We show that this running time is optimal, up to subpolynomial factors, under popular fine-grained complexity assumptions. More specifically, we show that under the APSP Hypothesis the problem cannot be solved faster already in undirected graphs with non-negative edge weights. This lower bound holds even restricted to graphs of arbitrary density and for arbitrary $h \in O(\sqrt{m})$. Moreover, under a stronger assumption, namely the Min-Plus Convolution Hypothesis, we can eliminate the restriction $h \in O(\sqrt{m})$. In other words, the $O(hm)$ bound is tight for the entire space of parameters $h$, $m$, and $n$, where $n$ is the number of nodes. Our lower bounds can be contrasted with the recent near-linear time algorithm for the negative-weight Single-Source Shortest Paths problem, which is the textbook application of the Bellman--Ford algorithm.
翻译:本文涉及在边缘加权图中,在最多为美元边缘的边端找到最短的美元-美元路径的问题。 Bellman- Ford 算法以美元(hm) 时间解决了这个问题, 美元就是边缘数。 我们显示, 在流行的精细复杂假设下, 运行时间最理想, 最高是亚极因素。 更具体地说, 我们显示, 在 APSP 假说下, 问题无法更快地在非偏差边缘重量的非方向图中解决 。 这个更低的边框甚至局限于任意密度图和任意的美元( $) O(\\\ sqrt{m}) 。 此外, 在更强有力的假设下, 即 Min- Plus Convoluction Hypothes, 我们可以消除限制 $( asin O) (sqruple) 。 。 换句话说, $(h) $(h) man) 绑定的图在全部参数面积为$、 $ $ 和 $ $ $ $ $(n $ (n) lax) lax) 上, 其中最接近的平面的公式是我们最短的平面的平面的平面的平面的平面的公式, 。