Modern CNN-based face detectors have achieved tremendous strides due to large annotated datasets. However, misaligned results with high detection confidence but low localization accuracy restrict the further improvement of detection performance. In this paper, we first generate detection results on training set itself. Surprisingly, a considerable part of them exist the same misalignment problem. Then, we carefully examine these misaligned cases and point out annotation inconsistency is the main reason. Finally, we propose a novel Bounding-Box Deep Calibration (BDC) method to reasonably replace inconsistent annotations with model predicted bounding-boxes and create a new annotation file for training set. Extensive experiments on WIDER FACE dataset show the effectiveness of BDC on improving models' precision and recall rate. Our simple and effective method provides a new direction for improving face detection. Source code is available at https://github.com/shiluo1990/BDC.
翻译:以CNN为基础的现代面对面探测器由于大量附加说明的数据集而取得了巨大的进步。然而,与检测信心高但本地化精度低的错误结果限制了检测性能的进一步改善。在本文中,我们首先对培训设置本身产生检测性结果。令人惊讶的是,其中相当一部分存在同样的不匹配问题。然后,我们仔细研究这些不匹配案例,指出批注不一致是主要原因。最后,我们提议一种新颖的Bounding-Box Deep校准(BDC)方法,以合理取代不一致的说明,代之以模型预测的捆绑箱,并创建一套新的培训说明文件。WIDER FACE数据集的广泛实验表明BDC在提高模型精确度和召回率方面的有效性。我们简单有效的方法为改进面部检测提供了新的方向。源代码可在 https://github.com/shilu1990/BDC查阅。