Decentralized optimization over time-varying graphs has been increasingly common in modern machine learning with massive data stored on millions of mobile devices, such as in federated learning. This paper revisits the widely used accelerated gradient tracking and extends it to time-varying graphs. We prove the $O((\frac{\gamma}{1-\sigma_{\gamma}})^2\sqrt{\frac{L}{\epsilon}})$ and $O((\frac{\gamma}{1-\sigma_{\gamma}})^{1.5}\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon})$ complexities for the practical single loop accelerated gradient tracking over time-varying graphs when the problems are nonstrongly convex and strongly convex, respectively, where $\gamma$ and $\sigma_{\gamma}$ are two common constants charactering the network connectivity, $\epsilon$ is the desired precision, and $L$ and $\mu$ are the smoothness and strong convexity constants, respectively. Our complexities improve significantly over the ones of $O(\frac{1}{\epsilon^{5/7}})$ and $O((\frac{L}{\mu})^{5/7}\frac{1}{(1-\sigma)^{1.5}}\log\frac{1}{\epsilon})$, respectively, which were proved in the original literature only for static graphs, where $\frac{1}{1-\sigma}$ equals $\frac{\gamma}{1-\sigma_{\gamma}}$ when the network is time-invariant. When combining with a multiple consensus subroutine, the dependence on the network connectivity constants can be further improved to $O(1)$ and $O(\frac{\gamma}{1-\sigma_{\gamma}})$ for the computation and communication complexities, respectively. When the network is static, by employing the Chebyshev acceleration, our complexities exactly match the lower bounds without hiding any poly-logarithmic factor for both nonstrongly convex and strongly convex problems.


翻译:在现代机器学习中,对时间变化图的分散优化越来越常见, 大量数据储存在数百万个移动设备上, 比如在联盟学习中。 本文重新审视广泛使用的加速梯度跟踪, 并将其推广到时间变化图中。 当问题不是强烈的共性和强烈的共性时, 我们证明$2\qrt\frac{L\epsilón}2\qrt\frac} 美元和$O( (\\\ gamma_1-\ slima_ 1) 和$O (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\xlxxxxxxxxxx) 。 当我们网络连接以美元为基数的两个常见常数时, 美元是原始的精确度, 美元是原始的直数, 美元和美元的直系是平的平坦性 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
85+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
多目标跟踪 近年论文及开源代码汇总
极市平台
20+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
多目标跟踪 近年论文及开源代码汇总
极市平台
20+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Top
微信扫码咨询专知VIP会员