Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.
翻译:在个人隐私和社会保障方面,发现假冒脸部起着重要作用。随着对抗性基因模型的开发,高质量的假造图像越来越难以与真实人区分。现有的方法总是将伪造检测任务视为共同的二进制或多标签分类,忽视探索多种多模式伪造图像类型,例如可见光谱和近红外情景。在本文件中,我们提议为多式假冒图像检测建立一个新型的等级伪造分类(HFC-MFFD),该分类可以有效地学习强有力的补丁混合域代表制,以加强在多种模式情景下的伪造认证。当地空间混合域域功能模块旨在探索地方不同面貌区域在图像和频率领域的强烈歧视性伪造线索。此外,还提议了具体的等级伪造面部分类,以缓解阶级不平衡问题,进一步促进检测工作。具有代表性的多式假冒脸检测数据集的实验结果展示了拟议中的氢氟碳化合物-MFFD的优异混合域代表制,以在多种模式情景下加强伪造认证。在州/艺术算法中,可用的源代码和公开版本。