Autonomous vehicles (AVs), equipped with numerous sensors such as camera, LiDAR, radar, and ultrasonic sensor, are revolutionizing the transportation industry. These sensors are expected to sense reliable information from a physical environment, facilitating the critical decision-making process of the AVs. Ultrasonic sensors, which detect obstacles in a short distance, play an important role in assisted parking and blind spot detection events. However, due to their weak security level, ultrasonic sensors are particularly vulnerable to signal injection attacks, when the attackers inject malicious acoustic signals to create fake obstacles and intentionally mislead the vehicles to make wrong decisions with disastrous aftermath. In this paper, we systematically analyze the attack model of signal injection attacks toward moving vehicles. By considering the potential threats, we propose SoundFence, a physical-layer defense system which leverages the sensors' signal processing capability without requiring any additional equipment. SoundFence verifies the benign measurement results and detects signal injection attacks by analyzing sensor readings and the physical-layer signatures of ultrasonic signals. Our experiment with commercial sensors shows that SoundFence detects most (more than 95%) of the abnormal sensor readings with very few false alarms, and it can also accurately distinguish the real echo from injected signals to identify injection attacks.
翻译:装有摄影机、LIDAR、雷达和超声波传感器等许多传感器的自动飞行器(AV)正在使运输业发生革命性的变化,这些传感器预计将从物理环境中感知可靠的信息,便利AV的关键决策过程。超声波传感器在短距离内探测障碍,在协助停车和盲点探测事件中发挥重要作用。然而,由于其安全级别薄弱,超声波传感器特别容易被信号注射攻击,当攻击者输入恶意声信号,制造虚假障碍,故意误导车辆做出灾难性后果的错误决定时。在本文中,我们系统地分析向移动车辆发射信号攻击的攻击模式,促进AV的关键决策进程。我们提议建立“SoundFence”系统,即一个物理防御系统,在不需任何额外设备的情况下利用传感器的信号处理能力。由于安全级别薄弱,超声波传感器校验良性测量结果,并通过分析传感器读数和超声波信号的物理分界信号来检测信号注射攻击。我们对商业传感器的实验表明,“SoundFence”系统能够从反射器传感器的多数(超过95%)探测到真实的反射信号,并精确辨识信号。