Building differentiable simulations of physical processes has recently received an increasing amount of attention. Specifically, some efforts develop differentiable robotic physics engines motivated by the computational benefits of merging rigid body simulations with modern differentiable machine learning libraries. Here, we present a library that focuses on the ability to combine data driven methods with analytical rigid body computations. More concretely, our library \emph{Differentiable Robot Models} implements both \emph{differentiable} and \emph{learnable} models of the kinematics and dynamics of robots in Pytorch. The source-code is available at \url{https://github.com/facebookresearch/differentiable-robot-model}
翻译:对物理过程进行不同的模拟最近引起了越来越多的关注。具体地说,有些努力开发了不同的机器人物理学引擎,其动机是将硬体模拟与现代不同机器学习图书馆合并的计算效益。在这里,我们展示了一个图书馆,侧重于将数据驱动方法与分析硬体计算相结合的能力。更具体地说,我们的图书馆 \emph{可区别机器人模型} 既执行\ emph{可区别} 也执行\ emph{可区别} 和\ emph{可清除} 机器人运动和动态模型。源码可在\url{https://github.com/facerecearch/可区别-robot-model}查阅。