Traditionally Genetic Algorithm has been used for optimization of unimodal and multimodal functions. Earlier researchers worked with constant probabilities of GA control operators like crossover, mutation etc. for tuning the optimization in specific domains. Recent advancements in this field witnessed adaptive approach in probability determination. In Adaptive mutation primarily poor individuals are utilized to explore state space, so mutation probability is usually generated proportionally to the difference between fitness of best chromosome and itself (fMAX - f). However, this approach is susceptible to nature of fitness distribution during optimization. This paper presents an alternate approach of mutation probability generation using chromosome rank to avoid any susceptibility to fitness distribution. Experiments are done to compare results of simple genetic algorithm (SGA) with constant mutation probability and adaptive approaches within a limited resource constraint for unimodal, multimodal functions and Travelling Salesman Problem (TSP). Measurements are done for average best fitness, number of generations evolved and percentage of global optimum achievements out of several trials. The results demonstrate that the rank-based adaptive mutation approach is superior to fitness-based adaptive approach as well as SGA in a multimodal problem space.


翻译:以往的基因变异性主要用于优化单式和多式功能。早期研究人员与大会控制操作员如交叉、突变等的常有概率一起工作,以调整特定领域的优化。该领域最近的进展见证了概率测定的适应性方法。适应性变异性主要是穷人用来探索国家空间,因此,突变概率通常与最佳染色体和自身(fMAX-f)的适合性之间的差别成正比。然而,这种方法在优化期间容易发生健康分布的性质。本文介绍了一种突变概率生成的替代方法,使用染色体等级来避免出现任何健康分布的易感性。进行了实验,以比较简单的基因算法的结果,在单一模式、多式功能和旅行推销员问题(TSP)有限的资源限制范围内,将经常发生突变概率和适应性方法的结果进行比较。对平均最佳健康、几代相演变和全球最佳成就的百分比进行了衡量。结果显示,基于等级的变异变方法优于基于健康的适应方法,在多式联运空间的SGA中也与SGA一样。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Adaptive transfer learning
Arxiv
0+阅读 · 2021年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员