In observational studies, covariate imbalance generates confounding, resulting in biased comparisons. Although propensity score-based weighting approaches facilitate unconfounded group comparisons for implicit target populations, existing techniques may not directly or efficiently analyze multiple studies with multiple groups and provide results generalizable to larger populations. Moreover, few methods deliver precise inferences for various estimands with censored survival outcomes. We propose a new concordant target population approach, which constructs generalized balancing weights and realistic target populations. Our method can incorporate researcher-specified natural population attributes and synthesize information by appropriately compensating for over- or under-represented groups to achieve covariate balance. The constructed {concordant} weights are agnostic to specific estimators, estimands, and outcomes and maximize the effective sample size (ESS) for more precise inferences. Simulation studies and descriptive comparisons of glioblastoma outcomes of racial groups in multiple TCGA studies demonstrate the strategy's practical advantages. Unlike existing weighting techniques, the proposed concordant target population revealed a drastically different result: Blacks were more vulnerable and endured significantly worse prognoses; Asians had the best outcomes with a median overall survival of 1,024 (SE: 15.2) days, compared to 384 (SE: 1.2) and 329 (SE: 19.7) days for Whites and Blacks, respectively.
翻译:在观察研究中,差异性不平衡会产生混乱,导致偏差性比较。虽然基于偏差的分分加权法有助于对隐含目标人口进行无根据的群体比较,但现有技术可能无法直接或有效分析多组群的多重研究,无法为广大人口提供一般结果。此外,很少有方法对各种估计值提供精确的推论,并带来受审查的生存结果。我们提出了一种新的一致的目标人口方法,该方法将普遍平衡加权数和现实的目标人口组成。我们的方法可以纳入研究人员指定的自然人口特征,并通过适当补偿代表过多或代表不足的群体来综合信息,以实现同化平衡。 已经建立的{协调}加权数可能无法直接或有效地直接或有效地分析多组群群的多重研究,不能直接或有效地分析多组群群的多组类研究,并且能够为更准确的推论断结果;我们提出了一个新的一致的目标人口方法,该方法可以建立普遍平衡权重和现实的目标人口。我们的方法可以纳入研究人员指定的自然人口属性和综合信息,通过适当补偿代表人数过多或不足的群体来实现同化的平衡。 已经建立的[和代表不足的组群 建立起来的] 现有的加权的加权的加权的加权的加权的加权加权的加权的加权的加权权重权重数对具体的权重数对具体的比对特定估计对具体的估、估计对具体的估计结果具有不可分数和结果:黑人和结果分别为:黑人和最弱和最差的中间点:19-SESESE5天和最差的平均值和最差的比。