Building a fault-tolerant edge system that can quickly react to node overloads or failures is challenging due to the unreliability of edge devices and the strict service deadlines of modern applications. Moreover, unnecessary task migrations can stress the system network, giving rise to the need for a smart and parsimonious failure recovery scheme. Prior approaches often fail to adapt to highly volatile workloads or accurately detect and diagnose faults for optimal remediation. There is thus a need for a robust and proactive fault-tolerance mechanism to meet service level objectives. In this work, we propose PreGAN, a composite AI model using a Generative Adversarial Network (GAN) to predict preemptive migration decisions for proactive fault-tolerance in containerized edge deployments. PreGAN uses co-simulations in tandem with a GAN to learn a few-shot anomaly classifier and proactively predict migration decisions for reliable computing. Extensive experiments on a Raspberry-Pi based edge environment show that PreGAN can outperform state-of-the-art baseline methods in fault-detection, diagnosis and classification, thus achieving high quality of service. PreGAN accomplishes this by 5.1% more accurate fault detection, higher diagnosis scores and 23.8% lower overheads compared to the best method among the considered baselines.
翻译:由于边缘装置不可靠和现代应用的严格服务期限,建立一个能对节点超负荷或故障迅速作出反应的容错边缘系统具有挑战性。此外,不必要的任务迁移可以强调系统网络,从而导致需要智能和尖锐的故障回收计划。 先前的办法往往无法适应高度波动的工作量,或准确检测和诊断出最佳补救的错误。 因此,需要一个强大和积极主动的容错机制来实现服务水平目标。 在这项工作中,我们提议PreGAN,一个综合的AI模型,即使用基因反转网络(GAN)来预测在集装箱化边缘部署中预防性的过错容忍决定。 PreGAN与GAN一起使用联合模拟方法学习几发异常分类器,并主动预测可靠计算中的迁移决定。基于Rasp-Pi的边缘环境的广泛实验显示,PreGAN可以超越在错误探测、诊断和分类方面最先进的基准方法,从而实现高质量的服务。 PreGAN使用联合模拟方法,学习几发异常分解器,并用比高的标数率率分析。