We consider a binary statistical hypothesis testing problem, where $n$ independent and identically distributed random variables $Z^n$ are either distributed according to the null hypothesis $P$ or the alternate hypothesis $Q$, and only $P$ is known. For this problem, a well-known test is the Hoeffding test, which accepts $P$ if the Kullback-Leibler (KL) divergence between the empirical distribution of $Z^n$ and $P$ is below some threshold. In this paper, we consider Hoeffding-like tests, where the KL divergence is replaced by other divergences, and characterize, for a large class of divergences, the first and second-order terms of the type-II error for a fixed type-I error. Since the considered class includes the KL divergence, we obtain the second-order term of the Hoeffiding test as a special case.
翻译:我们认为一个二元统计假设测试问题,即独立和同样分布的随机变量美元,要么按照无效假设分配,要么按照美元或替代假设分配,只有美元,只有美元为已知。对于这一问题,一个众所周知的检验标准是霍弗金检验标准,如果Kullback-Leiber(KL)在美元和美元之间的实证分配差异低于某种阈值,则接受美元。在本文中,我们认为类似霍弗金的检验标准,即KL差异被其他差异所取代,对于一大类差异,将第二类错误的第一和第二级条件定性为固定类型I错误。由于所考虑的类别包括KL差异,我们作为特例获得了Hoffiding测试的第二级条件。