Deep Speech Enhancement Challenge is the 5th edition of deep noise suppression (DNS) challenges organized at ICASSP 2023 Signal Processing Grand Challenges. DNS challenges were organized during 2019-2023 to stimulate research in deep speech enhancement (DSE). Previous DNS challenges were organized at INTERSPEECH 2020, ICASSP 2021, INTERSPEECH 2021, and ICASSP 2022. From prior editions, we learnt that improving signal quality (SIG) is challenging particularly in presence of simultaneously active interfering talkers and noise. This challenge aims to develop models for joint denosing, dereverberation and suppression of interfering talkers. When primary talker wears a headphone, certain acoustic properties of their speech such as direct-to-reverberation (DRR), signal to noise ratio (SNR) etc. make it possible to suppress neighboring talkers even without enrollment data for primary talker. This motivated us to create two tracks for this challenge: (i) Track-1 Headset; (ii) Track-2 Speakerphone. Both tracks has fullband (48kHz) training data and testset, and each testclips has a corresponding enrollment data (10-30s duration) for primary talker. Each track invited submissions of personalized and non-personalized models all of which are evaluated through same subjective evaluation. Most models submitted to challenge were personalized models, same team is winner in both tracks where the best models has improvement of 0.145 and 0.141 in challenge's Score as compared to noisy blind testset.


翻译:暂无翻译

1
下载
关闭预览

相关内容

ICASSP是全球最大,最全面的技术会议,重点是信号处理及其应用。会议主题包括但不限于以下主题:音频和声音信号处理、量子信号处理、生物医学信号与图像处理、遥感与信号处理、压缩感知,采样和字典学习、传感器阵列和多通道信号处理、信号处理的设计与实现、大数据信号处理、财务信号处理。 官网地址:http://dblp.uni-trier.de/db/conf/icassp/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月22日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员