Bayesian inversion generates a posterior distribution of model parameters from an observation equation and prior information both weighted by hyperparameters. The prior is also introduced for the hyperparameters in fully Bayesian inversions and enables us to evaluate both the model parameters and hyperparameters probabilistically by the joint posterior. However, even in a linear inverse problem, it is unsolved how we should extract useful information on the model parameters from the joint posterior. This study presents a theoretical exploration into the appropriate dimensionality reduction of the joint posterior in the fully Bayesian inversion. We classify the ways of probability reduction into the following three categories focused on the marginalisation of the joint posterior: (1) using the joint posterior without marginalisation, (2) using the marginal posterior of the model parameters and (3) using the marginal posterior of the hyperparameters. First, we derive several analytical results that characterise these categories. One is a suite of semianalytic representations of the probability maximisation estimators for respective categories in the linear inverse problem. The mode estimators of categories (1) and (2) are found asymptotically identical for a large number of data and model parameters. We also prove the asymptotic distributions of categories (2) and (3) delta-functionally concentrate on their probability peaks, which predicts two distinct optimal estimates of the model parameters. Second, we conduct a synthetic test and find an appropriate reduction is realised by category (3), typified by Akaike's Bayesian information criterion (ABIC). The other reduction categories are shown inappropriate for the case of many model parameters, where the probability concentration of the marginal posterior of the model parameters is found no longer to mean the central limit theorem...
翻译:Bayesian 内转产生一个观测方程式和由超参数加权的先前信息的模型参数的外表分布。 之前的参数还被引入用于全Bayesian反转的超参数, 并使我们能够评估模型参数和超参数的概率。 但是, 即使在线性反向问题中, 我们如何从联合后转的后演中提取关于模型参数的有用信息是无法解析的。 本研究对完全Bayesian反转的合并后代数的亚表层参数的适当高度变差参数进行了理论探索。 我们将概率减法分为以下三个类别, 重点是联合后代数的边缘值的边缘值。 (1) 使用联合后代数, (2) 使用模型的边际外延和 (3) 使用多光度的边际外延。 首先, 我们从这些模型中得出若干分析结果。 这是对全巴伊斯反向反转的分类中, 对不同亚值的概率测算的概率的精确度参数的精确度参数的精确度参数的精确度值的精确度值的精确度值缩缩缩缩缩图。 模型的模型的模型的模型的模型的模型的模型的模型的精确度分解的精确度的精确度分解为二。 的精度的精确度的精确度的精确度分解的精确度值的精确度的精确度的分解的分解。