Keeping up with the research literature plays an important role in the workflow of scientists - allowing them to understand a field, formulate the problems they focus on, and develop the solutions that they contribute, which in turn shape the nature of the discipline. In this paper, we examine the literature review practices of data scientists. Data science represents a field seeing an exponential rise in papers, and increasingly drawing on and being applied in numerous diverse disciplines. Recent efforts have seen the development of several tools intended to help data scientists cope with a deluge of research and coordinated efforts to develop AI tools intended to uncover the research frontier. Despite these trends indicative of the information overload faced by data scientists, no prior work has examined the specific practices and challenges faced by these scientists in an interdisciplinary field with evolving scholarly norms. In this paper, we close this gap through a set of semi-structured interviews and think-aloud protocols of industry and academic data scientists (N = 20). Our results while corroborating other knowledge workers' practices uncover several novel findings: individuals (1) are challenged in seeking and sensemaking of papers beyond their disciplinary bubbles, (2) struggle to understand papers in the face of missing details and mathematical content, (3) grapple with the deluge by leveraging the knowledge context in code, blogs, and talks, and (4) lean on their peers online and in-person. Furthermore, we outline future directions likely to help data scientists cope with the burgeoning research literature.


翻译:与研究文献保持同步在科学家的工作流程中发挥着重要的作用,使科学家们能够理解一个领域,制定他们所关注的问题,并制定他们所贡献的解决方案,这反过来又决定了学科的性质。在本论文中,我们审查了数据科学家的实践。数据科学代表了一个领域,看到论文数量急剧上升,并越来越多地吸收和应用于多种学科。最近的努力看到开发了若干工具,以帮助数据科学家应付大量研究和协调努力开发旨在发现研究前沿的AI工具。尽管这些趋势表明数据科学家所面临的信息过量,但没有以前的工作对这些科学家在跨学科领域面对不断发展的学术规范所面临的具体做法和挑战进行审查。在本论文中,我们通过一组半结构化的访谈和产业和学术数据科学家的智商协议(N=20)。我们的结果证实了其他知识工作者的做法,发现了一些新发现:个人(1)在寻找和感知旨在发现其学科泡沫之外的论文时受到挑战,但(2)在面对缺失的细节和数学内容时,很难理解这些科学家们所面临的具体做法和挑战。 在本文件中,我们通过一系列半结构化的访谈和学术和学术研究大纲来弥补这一差距。此外,我们可能通过利用在线的理论和数据走向,在研究中学习中学习。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2022年8月16日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员