Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Arguably, most MIAs, however, make use of the model's prediction scores - the probability of each output given some input - following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures, e.g., ReLU type neural networks produce almost always high prediction scores far away from the training data. Consequently, MIAs will miserably fail since this behavior leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of classifiers and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions far away from the training data, the more they reveal the training data.


翻译:成员推论攻击( MIAs) 旨在确定是否使用特定样本来训练预测模型。 了解这一点确实可能导致隐私侵犯。 可以说, 大部分MIAs使用模型预测分数, 即每个产出的概率, 某些投入的概率, 是因为经过训练的模式在培训数据上往往表现不同。 我们争辩说, 对于许多现代深层次网络结构来说,这是个谬误,例如, ReLU型神经网络几乎总是产生远离培训数据的高预测分数。 因此, MIAs 可能会错误地失败, 因为这种行为不仅在已知领域,而且在分配数据之外导致高的假阳性率, 并隐含地作为抵御MIAs 的防御手段。 具体地说, 使用基因化对抗网络, 我们能够产生大量潜在的被错误归类为培训数据的一部分的样本。 换句话说, MIAs的威胁是高估的, 并且比先前假设的少的信息被泄露。 此外, MIAs的过度自信和他们远离MIA的敏感度之间实际上存在一种交易。 当他们更了解数据时, 当他们更了解低的训练时, 当他们更了解了对MIAs的敏感度时, 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月21日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员