In Keynesian Beauty Contests notably modeled by p-guessing games, players try to guess the average of guesses multiplied by p. Convergence of plays to Nash equilibrium has often been justified by agents' learning. However, interrogations remain on the origin of reasoning types and equilibrium behavior when learning takes place in unstable environments. When successive values of p can take values above and below 1, bounded rational agents may learn about their environment through simplified representations of the game, reasoning with analogies and constructing expectations about the behavior of other players. We introduce an evolutionary process of learning to investigate the dynamics of learning and the resulting optimal strategies in unstable p-guessing games environments with analogy partitions. As a validation of the approach, we first show that our genetic algorithm behaves consistently with previous results in persistent environments, converging to the Nash equilibrium. We characterize strategic behavior in mixed regimes with unstable values of p. Varying the number of iterations given to the genetic algorithm to learn about the game replicates the behavior of agents with different levels of reasoning of the level k approach. This evolutionary process hence proposes a learning foundation for endogenizing existence and transitions between levels of reasoning in cognitive hierarchy models.


翻译:在以质疑游戏为显著模型的凯恩斯美容比赛中,玩家试图猜测猜测的平均数乘以p.。玩耍与纳什均衡的趋同往往因代理人的学习而有正当理由。然而,当学习在不稳定的环境中进行时,对推理类型和平衡行为的起源仍然有疑问。当P的连续数值可以取1以上和1以下的数值时,捆绑的合理物剂可以通过简化游戏的展示、模拟推理和构建其他玩家行为的期望来了解其环境。我们引入了学习的进化过程,以调查学习的动态和由此而来的最佳策略,在不稳定的猜想游戏环境中,以类推分布。作为方法的验证,我们首先表明我们的基因算法与在持久性环境中的以往结果一致,与纳什平衡相趋同。我们把混合的两种制度的战略行为与不稳定的价值定性为p. 遗传算算法的迭代数,以了解游戏的复制具有不同层次推理的代理人的行为。因此,这个进过程提出了一种学习基础,用于在推理中最终化存在和认知等级之间的转变。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
4+阅读 · 2018年3月1日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员