Dask is a popular parallel and distributed computing framework, which rivals Apache Spark to enable task-based scalable processing of big data. The Dask Distributed library forms the basis of this computing engine and provides support for adding new communication devices. It currently has two communication devices: one for TCP and the other for high-speed networks using UCX-Py -- a Cython wrapper to UCX. This paper presents the design and implementation of a new communication backend for Dask -- called MPI4Dask -- that is targeted for modern HPC clusters built with GPUs. MPI4Dask exploits mpi4py over MVAPICH2-GDR, which is a GPU-aware implementation of the Message Passing Interface (MPI) standard. MPI4Dask provides point-to-point asynchronous I/O communication coroutines, which are non-blocking concurrent operations defined using the async/await keywords from the Python's asyncio framework. Our latency and throughput comparisons suggest that MPI4Dask outperforms UCX by 6x for 1 Byte message and 4x for large messages (2 MBytes and beyond) respectively. We also conduct comparative performance evaluation of MPI4Dask with UCX using two benchmark applications: 1) sum of cuPy array with its transpose, and 2) cuDF merge. MPI4Dask speeds up the overall execution time of the two applications by an average of 3.47x and 3.11x respectively on an in-house cluster built with NVIDIA Tesla V100 GPUs for 1-6 Dask workers. We also perform scalability analysis of MPI4Dask against UCX for these applications on TACC's Frontera (GPU) system with upto 32 Dask workers on 32 NVIDIA Quadro RTX 5000 GPUs and 256 CPU cores. MPI4Dask speeds up the execution time for cuPy and cuDF applications by an average of 1.71x and 2.91x respectively for 1-32 Dask workers on the Frontera (GPU) system.


翻译:达斯克是一个流行的平行且分布式计算框架, 它与 Apache 的 Park 相对应, 以基于任务且可扩缩的海量数据处理为对象。 Dask 分布式图书馆构成此计算引擎的基础, 并为添加新的通信设备提供支持。 目前它有两个通信设备: 一个是TCP, 另一个是使用UCX- Py的高速网络, 一个是使用UCX- Py( Cython Plus) 向 UCX 提供同步 I/ O 的通信包。 本文展示了达斯克的新通信后端的设计和实施, 称为 MPI4- STAx, 目标是与 GVP4- D 的现代 HPC 集群组合, 并且通过 MIDS. 4x 运行, IMI4x 运行一个大规模的业绩分析。

0
下载
关闭预览

相关内容

Dask是一个并行计算库,能在集群中进行分布式计算,能以一种更方便简洁的方式处理大数据量,与Spark这些大数据处理框架相比较,Dask更轻。Dask更侧重与其他框架,如:Numpy,Pandas,Scikit-learning相结合,从而使其能更加方便进行分布式并行计算。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Arxiv
0+阅读 · 2021年3月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员