Radiation Treatment Planning (RTP) is the process of planning the appropriate external beam radiotherapy to combat cancer in human patients. RTP is a complex and compute-intensive task, which often takes a long time (several hours) to compute. Reducing this time allows for higher productivity at clinics and more sophisticated treatment planning, which can materialize in better treatments. The state-of-the-art in medical facilities uses general-purpose processors (CPUs) to perform many steps in the RTP process. In this paper, we explore the use of accelerators to reduce RTP calculating time. We focus on the step that calculates the dose using the Graphics Processing Unit (GPU), which we believe is an excellent candidate for this computation type. Next, we create a highly optimized implementation for a custom Sparse Matrix-Vector Multiplication (SpMV) that operates on numerical formats unavailable in state-of-the-art SpMV libraries (e.g., Ginkgo and cuSPARSE). We show that our implementation is several times faster than the baseline (up-to 4x) and has a higher operational intensity than similar (but different) versions such as Ginkgo and cuSPARSE.
翻译:辐射治疗规划(RTP)是规划适当的外部射线放射疗法以防治人类病人癌症的过程。RTP是一项复杂和计算密集的任务,通常需要很长时间(几个小时)才能计算。缩短这一时间可以提高诊所的生产率,并进行更先进的治疗规划,这可以通过更好的治疗来实现。医疗设施的先进技术使用通用处理器(CPU)来实施RTP进程中的许多步骤。在本文中,我们探索使用加速器来减少RTP的计算时间。我们把重点放在使用图形处理器(GPU)计算剂量的步骤上,我们认为GPU是这一计算型号的优秀候选单位。接下来,我们为定制的Sparse 矩阵- Victor 乘法(SpMV) 设计了一个高度优化的实施方法,该方法使用的是最先进的SMV图书馆(例如Ginkgo和COPERS)中无法使用的数字格式。我们发现,我们的实施速度比基线(上至4x)要快好好好好好几倍,而其操作强度也比GPARSE(g)的深度要高得多。