While the COVID-19 outbreak was reported to first originate from Wuhan, China, it has been declared as a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 by WHO, and it has spread to over 180 countries by the time of this paper was being composed. As the disease spreads around the globe, it has evolved into a worldwide pandemic, endangering the state of global public health and becoming a serious threat to the global community. To combat and prevent the spread of the disease, all individuals should be well-informed of the rapidly changing state of COVID-19. In the endeavor of accomplishing this objective, a COVID-19 real-time analytical tracker has been built to provide the latest status of the disease and relevant analytical insights. The real-time tracker is designed to cater to the general audience without advanced statistical aptitude. It aims to communicate insights through various straightforward and concise data visualizations that are supported by sound statistical foundations and reliable data sources. This paper aims to discuss the major methodologies which are utilized to generate the insights displayed on the real-time tracker, which include real-time data retrieval, normalization techniques, ARIMA time-series forecasting, and logistic regression models. In addition to introducing the details and motivations of the utilized methodologies, the paper additionally features some key discoveries that have been derived in regard to COVID-19 using the methodologies.


翻译:虽然据报告,COVID-19疫情最初起源于中国武汉,但世卫组织于2020年1月30日宣布其为 " 国际关注公共卫生紧急事件 " (PHEIC),截至本文件编写之时,该疫情已蔓延到180多个国家,随着该疾病在全球蔓延,已演变成一种全球流行病,危及全球公共卫生状况,成为全球社会的严重威胁;为了防治和预防该疾病的蔓延,所有个人都应充分了解迅速变化的COVID-19状态。为实现这一目标,建立了COVID-19实时分析跟踪器,以提供该疾病的最新状况和相关分析见解。实时跟踪器旨在满足全球广大民众的需要,而没有先进的统计能力。它旨在通过各种直截了当和简洁的数据直观化,通过可靠的统计基础和可靠数据来源支持,传达各种直观的数据。本文的目的是讨论用来生成实时跟踪器所显示的洞察力的主要方法,其中包括实时数据检索、正常化技术、ARID-19-19实时分析跟踪器。实时数据跟踪技术、ARIMA-分析器模型的更新模型的更新,还采用了新的时间分析方法。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员