We propose a parsimonious spatiotemporal model for time series data on a spatial grid. Our model is capable of dealing with high-dimensional time series data that may be collected at hundreds of locations and capturing the spatial non-stationarity. In essence, our model is a vector autoregressive model that utilizes the spatial structure to achieve parsimony of autoregressive matrices at two levels. The first level ensures the sparsity of the autoregressive matrices using a lagged-neighborhood scheme. The second level performs a spatial clustering of the non-zero autoregressive coefficients such that nearby locations share similar coefficients. This model is interpretable and can be used to identify geographical subregions, within each of which, the time series share similar dynamical behavior with homogeneous autoregressive coefficients. The model parameters are obtained using the penalized maximum likelihood with an adaptive fused Lasso penalty. The estimation procedure is easy to implement and can be tailored to the need of a modeler. We illustrate the performance of the proposed estimation algorithm in a simulation study. We apply our model to a wind speed time series dataset generated from a climate model over Saudi Arabia to illustrate its usefulness. Limitations and possible extensions of our method are also discussed.


翻译:我们为空间网格上的时间序列数据提出一个微小的随机时空模型。我们的模型能够处理在数百个地点收集的高维时间序列数据,并捕捉空间非静止性。实质上,我们的模型是一个矢量自动递减模型,利用空间结构在两个层次上达到自动递减矩阵的偏差。第一层确保自动递减矩阵的宽度,使用滞后的邻里机制。第二层对非零自动递增系数进行空间组合,以便附近地点具有类似的系数。这个模型是可以解释的,可用于确定地理分区,其中每个分区的时间序列都具有相同的动态行为和均匀的自动递减系数。模型参数是使用受限的最大可能性和适应性结合的拉索罚款获得的。估算程序易于实施,而且可以适应模型的需要。我们在模拟研究中演示了拟议的非零自动递增系数的绩效。我们把模型应用于风速时间序列数据序列,从一个气候模型到沙特阿拉伯的扩展方法,也用来说明其可能的实用性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员