We propose a parsimonious spatiotemporal model for time series data on a spatial grid. Our model is capable of dealing with high-dimensional time series data that may be collected at hundreds of locations and capturing the spatial non-stationarity. In essence, our model is a vector autoregressive model that utilizes the spatial structure to achieve parsimony of autoregressive matrices at two levels. The first level ensures the sparsity of the autoregressive matrices using a lagged-neighborhood scheme. The second level performs a spatial clustering of the non-zero autoregressive coefficients such that nearby locations share similar coefficients. This model is interpretable and can be used to identify geographical subregions, within each of which, the time series share similar dynamical behavior with homogeneous autoregressive coefficients. The model parameters are obtained using the penalized maximum likelihood with an adaptive fused Lasso penalty. The estimation procedure is easy to implement and can be tailored to the need of a modeler. We illustrate the performance of the proposed estimation algorithm in a simulation study. We apply our model to a wind speed time series dataset generated from a climate model over Saudi Arabia to illustrate its usefulness. Limitations and possible extensions of our method are also discussed.
翻译:我们为空间网格上的时间序列数据提出一个微小的随机时空模型。我们的模型能够处理在数百个地点收集的高维时间序列数据,并捕捉空间非静止性。实质上,我们的模型是一个矢量自动递减模型,利用空间结构在两个层次上达到自动递减矩阵的偏差。第一层确保自动递减矩阵的宽度,使用滞后的邻里机制。第二层对非零自动递增系数进行空间组合,以便附近地点具有类似的系数。这个模型是可以解释的,可用于确定地理分区,其中每个分区的时间序列都具有相同的动态行为和均匀的自动递减系数。模型参数是使用受限的最大可能性和适应性结合的拉索罚款获得的。估算程序易于实施,而且可以适应模型的需要。我们在模拟研究中演示了拟议的非零自动递增系数的绩效。我们把模型应用于风速时间序列数据序列,从一个气候模型到沙特阿拉伯的扩展方法,也用来说明其可能的实用性。