In this paper, we propose an adaptive group lasso procedure to efficiently estimate structural breaks in cointegrating regressions. It is well-known that the group lasso estimator is not simultaneously estimation consistent and model selection consistent in structural break settings. Hence, we use a first step group lasso estimation of a diverging number of breakpoint candidates to produce weights for a second adaptive group lasso estimation. We prove that parameter changes are estimated consistently by group lasso and show that the number of estimated breaks is greater than the true number but still sufficiently close to it. Then, we use these results and prove that the adaptive group lasso has oracle properties if weights are obtained from our first step estimation. Simulation results show that the proposed estimator delivers the expected results. An economic application to the long-run US money demand function demonstrates the practical importance of this methodology.


翻译:在本文中,我们提出一个适应性分组拉索程序,以有效估计整合回归过程中的结构间断。众所周知,该组拉索估计值并不是同时估算一致性,而模型选择在结构间断设置中是一致的。因此,我们使用对不同断点候选人的分数的分数进行第一步分组估计,以产生第二个适应性分组拉索估计的权重。我们证明参数变化是按组拉索一致估算的,并表明估计的间断数大于实际数,但仍与实际数相当。然后,我们利用这些结果来证明适应性组合拉索如果从第一步估计中获得权重,则具有骨骼特性。模拟结果显示,拟议的估计值提供了预期结果。美国长期资金需求功能的经济应用证明了这一方法的实际重要性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员