The comparison of local characteristics of two random processes can shed light on periods of time or space at which the processes differ the most. This paper proposes a method that learns about regions with a certain volume, where the marginal attributes of two processes are less similar. The proposed methods are devised in full generality for the setting where the data of interest are themselves stochastic processes, and thus the proposed method can be used for pointing out the regions of maximum dissimilarity with a certain volume, in the contexts of functional data, time series, and point processes. The parameter functions underlying both stochastic processes of interest are modeled via a basis representation, and Bayesian inference is conducted via an integrated nested Laplace approximation. The numerical studies validate the proposed methods, and we showcase their application with case studies on criminology, finance, and medicine.
翻译:比较两个随机过程的本地特性可以揭示过程差异最大的时间或空间。本文件建议了一种方法,了解一定数量区域的情况,其中两个过程的边际特征不那么相似。建议的方法设计得十分笼统,用于确定感兴趣的数据本身是随机过程的设置,因此,在功能数据、时间序列和点进程的背景下,可以使用拟议方法指出与一定数量差异最大的区域。两种不同过程所依据的参数功能数据、时间序列和点进程都是以基本代表制建模的,而贝叶斯人的推断是通过一个综合的巢状拉比特近距离进行的。数字研究验证了拟议方法,我们用关于犯罪学、金融和医学的案例研究展示了这些方法的应用情况。