For most practical optimisation problems local search outperforms random sampling - despite the "No Free Lunch Theorem". This paper introduces a property of search landscapes termed Neighbours' Similar Fitness (NSF) that underlies the good performance of neighbourhood search in terms of local improvement. Though necessary, NSF is not sufficient to ensure that searching for improvement among the neighbours of a good solution is better than random search. The paper introduces an additional (natural) property which supports a general proof that, for NSF landscapes, neighbourhood search beats random search.
翻译:对于大多数实际的优化问题,本地搜索优于随机抽样(尽管“没有免费午餐理论 ” ) 。 本文介绍了一个称为邻里类似健康(NSF)的搜索地貌属性,这是邻里搜索在当地改善方面良好表现的基础。 尽管有必要,但NSF不足以确保好解决方案的邻居之间寻求改进比随机搜索更好。 本文还引入了另外的(自然)属性,支持一个一般性证据,证明邻里搜索会随机搜索。