We verified that the deep learning method named reading periodic table introduced by ref. Deep Learning Model for Finding New Superconductors, which utilizes deep learning to read the periodic table and the laws of the elements, is applicable not only for superconductors, for which the method was originally applied but also for other problems of materials by demonstrating band gap estimations. We then extended the method to learn the laws better by directly learning the cylindrical periodicity between the right- and left-most columns in the periodic table at the learning representation level, that is, by considering the left- and right-most columns to be adjacent to each other. Thus, while the original method handles the table as is, the extended method treats the periodic table as if its two edges are connected. This is achieved using novel layers named periodic convolution layers, which can handle inputs exhibiting periodicity and may be applied to other problems related to computer vision, time series, and so on for data that possess some periodicity. In the reading periodic table method, no material feature or descriptor is required as input. We demonstrated two types of deep learning estimation: methods to estimate the existence of a bandgap, and methods to estimate the value of the bandgap given when the existence of the bandgap in the materials is known. Finally, we discuss the limitations of the dataset and model evaluation method. We may be unable to distinguish good models based on the random train-test split scheme; thus, we must prepare an appropriate dataset where the training and test data are temporally separate. The code and data are open.


翻译:查找新超导体的深层学习模型,它利用深度学习来阅读周期表和元素的定律。 因此,虽然最初的方法处理表格,但扩展的方法将周期表当作是连接了两个边缘的。 实现的方法是使用名为周期周期周期的新型结构,它可以处理显示周期性的投入,并且可以适用于与计算机视觉、时间序列和具有某种周期的数据有关的其他问题。 在阅读周期表方法中,不要求将材料特征或描述符作为输入。 我们展示了两种深度学习估计:在无法估算是否存在一个段状数据时,我们无法估算一个段状数据模型的存在,并且估计了方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年1月22日
Arxiv
0+阅读 · 2021年1月21日
Single-frame Regularization for Temporally Stable CNNs
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年3月28日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员